A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion (2024)

  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS Google Scholar

  • Schmuch, R. et al. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    CAS Google Scholar

  • Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    CAS PubMed Google Scholar

  • Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    CAS PubMed Google Scholar

  • Lu, Y. C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    CAS Google Scholar

  • Lim, H.-D. et al. Reaction chemistry in rechargeable Li–O2 batteries. Chem. Soc. Rev. 46, 2873–2888 (2017).

    CAS PubMed Google Scholar

  • Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    CAS PubMed Google Scholar

  • Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS PubMed Google Scholar

  • Xia, C., Kwok, C. Y. & Nazar, L. F. A high-energy-density lithium–oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361, 777 (2018).

    CAS PubMed Google Scholar

  • Li, Y. & Lu, J. Metal–air batteries: will they be future electrochemical energy storage of choice? ACS Energy Lett. 2, 1370–1377 (2017).

    CAS Google Scholar

  • Freunberger, S. A. True performance metrics in beyond-intercalation batteries. Nat. Energy 2, 17091 (2017).

    Google Scholar

  • Zhu, Z. et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016).

    CAS Google Scholar

  • Okuoka, S.-i et al. A new sealed lithium-peroxide battery with a Co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 4, 5684 (2014).

    CAS PubMed PubMed Central Google Scholar

  • Kobayashi, H. et al. Improved performance of Co-doped Li2O cathodes for lithium-peroxide batteries using LiCoO2 as a dopant source. J. Power Sources 306, 567–572 (2016).

    CAS Google Scholar

  • Kobayashi, H. et al. Cathode performance of Co-doped Li2O with specific capacity (400 mAh/g) enhanced by vinylene carbonate. J. Electrochem. Soc. 164, A750–A753 (2017).

    CAS Google Scholar

  • Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    CAS Google Scholar

  • Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    CAS PubMed Google Scholar

  • Wang, Y. et al. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries. J. Phys. Chem. C. 120, 6459–6466 (2016).

    CAS Google Scholar

  • Wang, Y. & Lu, Y.-C., Isotopic labeling reveals active reaction interfaces for electrochemical oxidation of lithium peroxide. Angew. Chem. Int. Ed. 58, https://doi.org/10.1002/ange.201901350 (2019).

    Google Scholar

  • Pi, Y. et al. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 16, 4424–4430 (2016).

    CAS PubMed Google Scholar

  • Girishkumar, G. et al. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS Google Scholar

  • Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 7, 1091–1099 (2015).

    Google Scholar

  • Qiao, Y. et al. From O2 to HO2: reducing by-products and overpotential in Li–O2 batteries by water addition. Angew. Chem. Int. Ed. 56, 4960–4964 (2017).

    CAS Google Scholar

  • Chen, Y. et al. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    CAS PubMed Google Scholar

  • Laoire, C. O. et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C. 114, 9178–9186 (2010).

    CAS Google Scholar

  • Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704–214710 (2011).

    CAS PubMed Google Scholar

  • McCloskey, B. D. et al. Limitations in rechargeability of Li–O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).

    CAS PubMed Google Scholar

  • Yao, K. P. C. et al. Solid-state activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries. Energy Environ. Sci. 8, 2417–2426 (2015).

    CAS Google Scholar

  • Ohzuku, T. & Ueda, A. Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994).

    CAS Google Scholar

  • Zhang, T. & Zhou, H. A reversible long-life lithium–air battery in ambient air. Nat. Commun 4, 1817 (2013).

    PubMed Google Scholar

  • Li, F. J. et al. Performance-improved Li–O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 7, 1648–1652 (2014).

    CAS Google Scholar

  • Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. 115, 1156–1161 (2018).

    CAS Google Scholar

  • Asadi, M. et al. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502 (2018).

    CAS PubMed Google Scholar

  • Gao, X. et al. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).

    CAS Google Scholar

  • Pi, Y. et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting. Adv. Funct. Mater. 27, 1700886 (2017).

    Google Scholar

  • Zhang, L. et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2, 19036–19045 (2014).

    CAS Google Scholar

  • Frens, G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973).

    CAS Google Scholar

  • Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS PubMed Google Scholar

  • Hy, S. et al. Direct in situ observation of Li2O evolution on li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    CAS PubMed Google Scholar

  • Qiao, Y. et al. Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017).

    CAS Google Scholar

  • Qiao, Y. et al. MOF-based separator in an Li–O2 battery: an effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 3, 463–468 (2018).

    CAS Google Scholar

  • McCloskey, B. D. et al. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    CAS PubMed Google Scholar

  • Beyer, H. et al. Antimony doped tin oxide–synthesis, characterization and application as cathode material in Li–O2 cells: implications on the prospect of carbon-free cathodes for rechargeable lithium–air batteries. J. Electrochem. Soc. 164, A1026–A1036 (2017).

    CAS Google Scholar

  • Schwenke, K. U. et al. The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J. Electrochem. Soc. 162, A573–A584 (2015).

    CAS Google Scholar

  • Kwak, W.-J. et al. Synergistic integration of soluble catalysts with carbon-free electrodes for Li–O2 batteries. ACS Catal. 7, 8192–8199 (2017).

    CAS Google Scholar

  • Schafzahl, B. et al. Quantifying total superoxide, peroxide, and carbonaceous compounds in metal–O2 batteries and the solid electrolyte interphase. ACS Energy Lett. 3, 170–176 (2018).

    CAS Google Scholar

  • Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 15, 327–328 (1943).

    CAS Google Scholar

  • Satterfield, C. N. & Bonnell, A. H. Interferences in titanium sulfate method for hydrogen peroxide. Anal. Chem. 27, 1174–1175 (1955).

    CAS Google Scholar

  • Li, F. J. et al. The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat. Common. 6, 8843 (2015).

    Google Scholar

  • Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    CAS PubMed Google Scholar

  • A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Lidia Grady

    Last Updated:

    Views: 5924

    Rating: 4.4 / 5 (45 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Lidia Grady

    Birthday: 1992-01-22

    Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

    Phone: +29914464387516

    Job: Customer Engineer

    Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

    Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.