The predicted persistence of cobalt in lithium-ion batteries (2024)

References

  1. Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 470 (2018).

    Article Google Scholar

  2. US Geological Survey. Mineral commodity summaries 2021 (US Geological Survey, 2021).

  3. Edmonson, J. & Holland, A. Materials for Electric Vehicles: Electric Motors, Battery Cells & Packs, HV Cabling 2020-2030 (IDTechEx, 2020).

  4. Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article Google Scholar

  5. Li, H. et al. Is cobalt needed in Ni-Rich positive electrode materials for lithium ion batteries? J. Electrochem. Soc. 166, A429–A439 (2019).

    Article Google Scholar

  6. Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article Google Scholar

  7. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017).

    Article Google Scholar

  8. Streipert, B. et al. Conventional electrolyte and inactive electrode materials in lithium-ion batteries: determining cumulative impact of oxidative decomposition at high voltage. ChemSusChem 13, 5301–5307 (2020).

    Article Google Scholar

  9. Wandt, J., Freiberg, A. T. S., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article Google Scholar

  10. Rinkel, B. L. D., Hall, D. S., Temprano, I. & Grey, C. P. Electrolyte oxidation pathways in lithium-ion batteries. J. Am. Chem. Soc. 142, 15058–15074 (2020).

    Article Google Scholar

  11. Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi1–xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).

    Article Google Scholar

  12. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361–A1377 (2017).

    Article Google Scholar

  13. Kasnatscheew, J. et al. Changing established belief on capacity fade mechanisms: thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under high voltage conditions. J. Phys. Chem. C 9, 1521–1529 (2017).

  14. Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    Article Google Scholar

  15. Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 1, 15008 (2018).

    Google Scholar

  16. BMO Capital Markets. The Lithium Ion Battery and the EV Market: The Science Behind What You Can’t See (2018); http://www.fullertreacymoney.com/system/data/files/PDFs/2018/February/22nd/BMO_Lithium_Ion_Battery_EV_Mkt_(20_Feb_2018).pdf

  17. Aiken, C. P. et al. A survey of in situ gas evolution during high voltage formation in Li-ion pouch cells. J. Electrochem. Soc. 162, A760 (2015).

    Article Google Scholar

  18. Kasnatscheew, J. et al. Learning from electrochemical data: simple evaluation and classification of LiMO2-type-based positive electrodes for Li-ion batteries. Energy Technol. 5, 1670–1679 (2017).

    Article Google Scholar

  19. Kasnatscheew, J., Röser, S., Börner, M. & Winter, M. Do increased Ni contents in LiNixMnyCozO2 (NMC) electrodes decrease structural and thermal stability of Li ion batteries? A thorough look by consideration of the Li+ extraction ratio. ACS Appl. Energy Mater. 2, 7733–7737 (2019).

    Article Google Scholar

  20. Urban, A., Abdellahi, A., Dacek, S., Artrith, N. & Ceder, G. Electronic-structure origin of cation disorder in transition-metal oxides. Phys. Rev. Lett. 119, 176402 (2017).

    Article Google Scholar

  21. Chen, H., Freeman, C. L. & Harding, J. H. Charge disproportionation and Jahn-Teller distortion in LiNiO2 and NaNiO2: a density functional theory study. Phys. Rev. B 84, 085108 (2011).

    Article Google Scholar

  22. Gamsjäger, H., Mompean, F. J., Issy-les-Moulineaux (France), NEA Data Bank, & OECD Nuclear Energy Agency. Chemical Thermodynamics of Nickel (Elsevier, 2005).

  23. Wang, M. & Navrotsky, A. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1−xCoxO2. Solid State Ion. 166, 167–173 (2004).

    Article Google Scholar

  24. Lide, D. R. et al. CRC Handbook of Chemistry and Physics (CRC Press, 2005).

  25. Kim, J. et al. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 8, 1702028 (2018).

    Article Google Scholar

  26. Papp, J. K. et al. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials. Electrochim. Acta 368, 137505 (2021).

    Article Google Scholar

  27. Lebens-Higgins, Z. W. et al. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Mater. Horiz. 6, 2112–2123 (2019).

    Article Google Scholar

  28. Baba, Y. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ion. 148, 311–316 (2002).

    Article Google Scholar

  29. Duh, Y.-S., Lee, C.-Y., Chen, Y.-L. & Kao, C.-S. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochim. Acta 642, 88–94 (2016).

    Article Google Scholar

  30. Dahn, J. R., Fuller, E. W., Obrovac, M. & von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ion. 69, 265–270 (1994).

    Article Google Scholar

  31. MacNeil, D. D., Lu, Z., Chen, Z. & Dahn, J. R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources 108, 8–14 (2002).

    Article Google Scholar

  32. Zhang, Z., Fouchard, D. & Rea, J. R. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J. Power Sources 70, 16–20 (1998).

    Article Google Scholar

  33. CAMX Power. GEMXTM: A Platform for Advanced High- Nickel Cathode Active Materials (2020). https://static1.squarespace.com/static/5ef24f5a75ecc479ebeb1eb0/t/5f10aa32295f7e43284a43c2/1594927666959/GEMX+Product+Overview_7_16_2020.pdf

  34. Kim, H., Kim, M. G., Jeong, H. Y., Nam, H. & Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015).

    Article Google Scholar

  35. Fu, X.-Z. et al. Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries. J. Solid State Electrochem. 14, 1117–1124 (2009).

    Article Google Scholar

  36. Yin, L. et al. Thermodynamics of antisite defects in layered nmc cathodes: systematic insights from high-precision powder diffraction analyses. Chem. Mater. 32, 1002–1010 (2020).

    Article Google Scholar

  37. Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article Google Scholar

  38. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z. & Myung, S.-T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).

    Article Google Scholar

  39. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article Google Scholar

  40. Klein, S. et al. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. J. Mater. Chem. A 9, 7546–7555 (2021).

    Article Google Scholar

  41. Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article Google Scholar

  42. Li, J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 164, A1534–A1544 (2017).

    Article Google Scholar

  43. Li, H. et al. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. J. Electrochem. Soc. 166, A1956 (2019).

    Article Google Scholar

  44. Li, H., Li, J., Ma, X. & Dahn, J. R. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries. J. Electrochem. Soc. 165, A1038 (2018).

    Article Google Scholar

  45. Sun, Y., Ouyang, C., Wang, Z., Huang, X. & Chen, L. Effect of Co content on rate performance of LiMn0.5−xCo2xNi0.5−xO2 cathode materials for lithium-ion batteries. J. Electrochem. Soc. 151, A504 (2004).

    Article Google Scholar

  46. Kim, Y., Lee, H. & Kang, S. First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2. J. Mater. Chem. 22, 12874 (2012).

    Article Google Scholar

  47. Zhecheva, E. & Stoyanova, R. Stabilization of the layered crystal structure of LiNiO2 by Co-substitution. Solid State Ion. 66, 143–149 (1993).

    Article Google Scholar

  48. Rougier, A., Saadoune, I., Gravereau, P., Willmann, P. & Delmas, C. Effect of cobalt substitution on cationic distribution in LiNi1−yCoyO2 electrode materials. Solid State Ion. 90, 83–90 (1996).

    Article Google Scholar

  49. Sun, Y.-K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320 (2009).

    Article Google Scholar

  50. Liu, Y. et al. The impact of upper cut-off voltage on the cycling performance of Li-ion cells with positive electrodes having various nickel contents. J. Electrochem. Soc. 169, 040531 (2022).

  51. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn (Electrochemical Energy Storage Department & Chemical Sciences and Engineering Division, Argonne National Laboratory, 2019).

  52. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article Google Scholar

  53. Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data 11, 1553–1566 (2019).

    Article Google Scholar

  54. Commodities: Price Chart (S&P Global Market Intelligence, 2020).

  55. Smith, C. G. Always the bridesmaid, never the bride: cobalt geology and resources. Appl. Earth Sci. 110, 75–80 (2001).

    Article Google Scholar

  56. Dolansky, L. M. Controls on the Genesis of Hydrothermal Cobalt Mineralization: Insights from the Mineralogy and Geochemistry of the Bou Azzer Deposits, Morocco. MSc thesis, McGill University (2007).

  57. Migdisov, A., Zezin, D. & Williams-Jones, A. An experimental study of Cobalt (II) complexation in Cl and H2S-bearing hydrothermal solutions. Geochim. Cosmochim. Acta 75, 4065–4079 (2011).

    Article Google Scholar

  58. Form 10-K 2019 (Freeport-McMoRan, 2020).

  59. Faenza, N. V. et al. Phase evolution and degradation modes of Rm LixNi1–yzCoyAlzO2 electrodes cycled near complete delithiation. Chem. Mater. 30, 7545–7574 (2018).

    Article Google Scholar

  60. Jung, R. et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 165, A132–A141 (2018).

    Article Google Scholar

  61. Ménétrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1140 (1999). 1135.

    Article Google Scholar

  62. Delmas, C. et al. An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties. Electrochim. Acta 45, 243–253 (1999).

    Article Google Scholar

  63. Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high energy density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article Google Scholar

  64. Kim, J.-H., Park, K.-J., Kim, S. J., Yoon, C. S. & Sun, Y.-K. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J. Mater. Chem. A 7, 2694–2701 (2019).

    Article Google Scholar

  65. Zhu, J. & Chen, G. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1−x−y]O2 cathodes. J. Mater. Chem. A 7, 5463–5474 (2019).

    Article Google Scholar

  66. Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    Article Google Scholar

Download references

The predicted persistence of cobalt in lithium-ion batteries (2024)
Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 5934

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.